
CompFrame

the component framework ... that keeps it simple

©2005 Peter R. Torpman (ptorpman at sourceforge net)

Table of Contents
CompFrame...1

 0 Terms and Abbreviations...1
 1 Background..1
 2 Introduction..2

 2.1 Component Class..2
 2.2 Interface..2
 2.3 Component Library..3
 2.4 Component Registration...3
 2.5 Interface Registration...3
 2.6 Command Registration...3

 3 Command Line..4
 3.1 create..4
 3.2 list...4
 3.3 connect..5
 3.4 help...5

 4 S − Scheduler...5
 5 M − Message Handler..6
 5.1 M Client Library...9
 6 C − Command Handler..9
 7 Environment Variables..10
 8 Legal..10

CompFrame

i

CompFrame
Author:

Peter R. Torpman (ptorpman at sourcefourge.net)

Version:
0.2

Date:
2005−06−02

Note:
CompFrame is written in C. The standard used is the GNU implementation of C99.

0 0 Terms and Abbreviations
1 1 Background
2 2 Introduction
2.1 2.1 Component Class
2.2 2.2 Interface
2.3 2.3 Component Library
2.4 2.4 Component Registration
2.5 2.5 Interface Registration
2.6 2.6 Command Registration
3 3 Command Line
4 5 M − Message Handler
4.1 5.1 M Client Library
5 4 S − Scheduler
6 6 C − Command Handler
7 7 Environment Variables
8 8 Legal

0 Terms and Abbreviations

Instance − An occurence of a component (class).

Interface − A set of functions used to manipulate the state of a component, or, to tell the component to
perform a specific task.

Class − A set of attributes and functions to manipulate those attributes.

Component − A part of the component framework, e.g a class, interface etc.

Component library − A set of components grouped together, e.g in a shared object library file.

1 Background

Having worked in several projects that made use of some component framework, I came to see that it would
really be beneficial for the OpenSource community to have a component framework. A component
framework that would initially contain my experiences and, hopefully, not contain the pitfalls that I run into in

CompFrame 1

the past with other component frameworks. In short, a straight−forward, easy to use piece of software that
would empower developers instead of restraining them.

I also happen to think that component based softwares are the right way to construct softwares. Why?!
Because if you do it right, you can keep functionality separated and specialized. Furthermore, the maintenance
will be easier. Also, functionality can be added easily in separate containers instead of patching some
obscurely and loosly ordered source code files.

My idea with CompFrame is that it can be used, extended and improved over time, without the need for
re−inventing the wheel (or paying lots of cash) every time a component based software is supposed to be
assembled. Thus, saving money and giving the poor developer time to address what's really important (and
interesting).

2 Introduction

Note:
In CompFrame the textual name of a component must be unique. And, in CompFrame the textual
name of an interface must be unique.

2.1 Component Class

A component class is realized using structs. All values needed by the component should be kept within this
struct. Do not use static variables in the source code files, because they will be open to all instances of the
component.

The example below depicts a component class with two attributes − one for the instance name and one for the
interface implemented by the component 'iface_test2'.

 typedef struct TestComp
 {
 char* instance_name:
 iface_test2* test_iface2;
 } TestComp;

2.2 Interface

A CompFrame interface needs two things − a unique textual name and a unique C type.

A component that wants to implement an interface must implement the functions implicated by the function
pointers declared in the interface type. For example, a component that would like to implement the interface
in the example below, would have to supply an implementation for the 'printHelloWorld' function.

 #define TEST2_IFACE_NAME "TEST2"

 typedef struct iface_test2
 {
 void (*printHelloWorld)(void);
 } iface_test2;

CompFrame

 2 Introduction 2

2.3 Component Library

A CompFrame component library is a shared object library (so−file), that may contain the implementation of
one or many components.

The library must have the following function defined:

 void dlopen_this(void)

The library file will upon opening be scanned for the dlopen_this() function. If the function cannot be found,
it is not a valid CompFrame component library.

2.4 Component Registration

A CompFrame component must register itself into the Registry of CompFrame before it can be used.

Registration can be done in the dlopen_this() function.

 cf_component_register("COMPNAME", create_me, set_me_up);

In this example the COMPNAME component is registered. The create_me() function will be called when a
user wants to create an instance of the component. set_me_up() will be called after the instance has been
created, in order to let it set itself up and get ready for business.

The library file will upon opening be scanned for the dlopen_this function. If the function cannot be found, it
is not a valid CompFrame component library.

2.5 Interface Registration

A component can implement no or many interfaces. Any interfaces implemented by the component must be
registered to the Registry.

 static iface_test2 iTest2;

 iTest2.printHelloWorld = myHelloWorld;

 CfIfaceToReg iface[] = {
 {TEST2_IFACE_NAME, &iTest2},
 {NULL,NULL}
 }

 cf_interface_register(comp,iface);

In the example above, the component registers that it implements the iface_test2 interface. And, it does so by
the myHelloWorld function.

2.6 Command Registration

Commands that can do all sorts of things, may be registered into CompFrame and made available on the

CompFrame

 2.3 Component Library 3

CompFrame command line interface (CLI).

The C system component is the Command Handler of CompFrame, and it is in that component we need to
register our commands. That is done in the following way:

 static int
 my_cmd(int argc,char** argv);

 void* cObj = cf_component_get(CF_C_NAME);
 cfi_c* cIface = cf_interface_get(cObj, CF_C_IFACE_NAME);

 cIface−>add(cObj, "create", create_cmd, "Usage: create <class> <name>");

In the example the command create is registered. The create_cmd() is the function that is to perform all the
work. Also, a help string is provided.

3 Command Line

The command line of CompFrame is currently like this:

 compframe −d <componentdir>
 [−c <configuration>]
 [−t <level>]

−d is used to point out the directory where the component libraries are located.

−c is used to point out the configuration file.

−t is used to specify trace level (0−3)

3.1 create

This command is used to create instances of components.

 CompFrame 0.2 (c)2005 Peter R. Torpman
 >> create TESTCOMP x1

An instance of TESTCOMP with the name 'x1' is created.

3.2 list

This command is used to list many things, such as registered classes, implemented interfaces etc.

 CompFrame 0.2 (c)2005 Peter R. Torpman
 >> list −c

The registered classes will be printed.

CompFrame

 3 Command Line 4

 CompFrame 0.2 (c)2005 Peter R. Torpman
 >> list −i x1

Lists the implemented interfaces of 'x1'.

3.3 connect

This command is used to connect instances of components.

 CompFrame 0.2 (c)2005 Peter R. Torpman
 >> connect x1 x2 TEST 1 2 "hello"

Connects instance 'x1' to instance 'x2' on its TEST interface, passing 1, 2 and "hello" as parameters.

3.4 help

Will print the help text supplied to the 'create' command.

 CompFrame 0.2 (c)2005 Peter R. Torpman
 >> help create

Shows the help text for the create command.

4 S − Scheduler

The thought of a "common time" for all components is nice. A time that is independent of the wall clock time.
A virtual time, that might mean that one component gets to execute 300 real seconds per cycle, while an other
just uses up 10 real seconds. But, they both think they executed 1 second, or whatever the cycle time is set to.

S, the CompFrame scheduler, makes sure that all components that chooses to be scheduled, are scheduled in a
round−robin type of fashion.

A component that wishes to be scheduled, must implement the cfi_s_client interface. interface:

 static cfi_s_client sClient;

 static void
 set_me_up(void* comp)
 {
 ::
 // Scheduler client interface
 sClient.execute = s_client_execute;

 // Register our interfaces
 CfIfaceToReg iface[] = {
 {CF_S_CLIENT_IFACE_NAME, &sClient},
 {NULL,NULL}
 };

 cf_interface_register(comp, iface);

 // Add ourself to the S scheduling loop

CompFrame

 3.3 connect 5

 void* sObj = cf_component_get(CF_S_NAME);

 cfi_s_server* sIface = cf_interface_get(sObj, CF_S_SERVER_IFACE_NAME);
 sIface−>add(sObj,this);

 ::
 }

After that registration, we will be called int the s_client_execute function, when S decides that it is our turn to
execute. In that function, we can do something like this:

 static void
 s_client_execute(void* obj, uint32_t slice, int* sliceRemain)
 {
 // do some stuff

 // Inform S that we have used up all our time
 *sliceRemain = 0;
 }

If we do not set sliceRemain to zero, we will get the remainder of the slice, plus the ordinary time slice, when
we are called upon again.

5 M − Message Handler

M, is the Message Handler of CompFrame. It is used to establish connections to components that reside
within CompFrame, from other applications that are somewhere else.

 CompFrame process
 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
 | |
 | 1) +−−−+ | 2) +−−−−−−−−−+
 | +−−−−−−−>| M |<−−−−−−−− | ExtProc |
 | | +−−−+ | +−−−−−−−−−+
 | +−−−−−−−+ | | ^
	comp	<−−−−−−−+	
+−−−−−−−+ 3)			
		4)	
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+			
 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

In the image above, the basics are shown for how a connection is established between a component within
CompFrame and an external program. First, in 1) the component registers itself within M. When doing that,
the component passes parameters to make itself unique − a UUID and a name. The name does not make this,

CompFrame

 5 M − Message Handler 6

so−called message receiver unique, it is the UUID and name together that makes it unique.

Second, the external program connects to M by using the mechanisms provided by the M client library (see
below). The program specifies which message receiver and UUID it is interested in communicating with.

M then looks up the registered message receiver and informs it that an external program is interested in some
communication.

After all this, in 4) the communication is established between the two entities.

M opens up a server socket during CompFrame initialization, that is used by the M client library. You can get
a hold of this port by looking for something like this:

 *** INFO # M server started on hammer:35545
 CompFrame 0.2 (c)2005 Peter R. Torpman
 >>

Or, you can get the port by entering the following command on the CLI:

 CompFrame 0.2 (c)2005 Peter R. Torpman
 >> m −l
 M server located at hammer:35545

Connections and Channels

M uses the concept of connections and channels. By definition, a connection is a socket connection between a
CompFrame internal component and an external entity. And, a channel is a logical path on that connection. M
allows for 255 channels for each connection.

Protocols

A protocol, in the world of M, is just a byte stream where the bytes have been given a specific meaning.
Nothing revolutionary at all. In a protocol, over a channel between A and B, the bytes could mean one thing in
one direction, and something completely different in the other.

For example, this could be a protocol description (yes, you need it for your own good):

 +−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−−−+−−−+
 | WHAT | LEN LB | LEN HB | PAYLOAD | 0 |
 +−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−−−+−−−+
 WHAT − 1 byte − Content selector. (What is carried..)
 LEN LB − 1 byte − Total length low byte of payload
 LEN HB − 1 byte − Total length high byte of payload
 PAYLOAD − n bytes − The payload of info.

And, this could be another:

 +−−−−−−−−−−+−−−+
 | PAYLOAD | 0 |
 +−−−−−−−−−−+−−−+
 PAYLOAD − n bytes (NULL terminated) − Good information.

CompFrame

 5 M − Message Handler 7

In short, you decide, the important thing is that sender and receiver agrees on what the different bytes of the
protocol means.

Interface

A component that wants to provide a message receiver needs to implement cfi_m_client inteface.

 // A sample protocol identifier...
 #define TEST_UUID "433e76d0−77d1−460d−9321−e2dc8dc8bd59"

 static void
 set_me_up(void* comp)
 {
 ::
 // Set up implementation of M client interface
 mifClient.connected = m_cli_connected;
 mifClient.disconnected = m_cli_disconnected;
 mifClient.message = m_cli_message;

 CfIfaceToReg iface[] = {
 {CF_M_CLIENT_IFACE_NAME, &mifClient},
 {NULL,NULL}
 };

 // Register interface
 cf_interface_register(comp, iface);

 // Store reference to M
 void* mObj = cf_component_get(CF_M_NAME);

 // Get server interface of M
 cfi_m_server* m = cf_interface_get(mObj, CF_M_SERVER_IFACE_NAME);

 // Add our message receiver
 m−>mr_add(mObj,this,TEST_UUID,"sample1",NULL);

 ::
 }

In this example, the component registers the sample1 message receiver,that implements the TEST_UUID
protocol. After this, the component is reachable from the outside world.

When a connection is established, the component will be called in the m_cli_connected function.

 static int
 m_cli_connected(void* comp, CfMConn* conn, uint8_t chan,void* userData)
 {
 TestComp* this = (TestComp*) comp;

 cf_info_log("Connected comp=%p conn=%p chan=%u \n",comp,conn,chan);

 // Disable our receiver if we only support one connection per
 // receiver
 this−>m−>mr_disable(this−>mObj,TEST_UUID,(char*)userData);

 return 1;
 }

CompFrame

 5 M − Message Handler 8

And, when a connection is broken, the component will be called in the m_cli_disconnected function.

 static int
 m_cli_disconnected(void* comp, CfMConn* conn, uint8_t chan,void* userData)
 {
 TestComp* this = (TestComp*) comp;

 cf_info_log("Disconnected comp=%p conn=%p chan=%u \n",comp,conn, chan);

 // Re−enable our receiver if we only support one connection per receiver
 this−>m−>mr_enable(this−>mObj,TEST_UUID,(char*)userData);

 return 1;
 }

The component will receive messages in the m_cli_message function.

 static int
 m_cli_message(void* comp,
 CfMConn* conn,
 uint8_t chan,
 int len,
 unsigned char* msg,
 void* userData)
 {
 TestComp* this = (TestComp*) comp;

 cf_info_log("Got message to %s: conn=%p chan=%u len=%d MSG=%s\n",
 (char*) userData,
 conn,
 chan,
 len,
 msg);

 unsigned char newMsg[256];

 strcpy(newMsg,"Hello, yourself!\n");

 this−>m−>send(this−>mObj,conn,chan,strlen(newMsg)+1,newMsg);

 return 1;
 }

5.1 M Client Library

Coming Soon!

6 C − Command Handler

Coming Soon!

CompFrame

 5.1 M Client Library 9

7 Environment Variables

CF_COMP_DIR − Can be used to point out the directory where components are stored.

 setenv CF_COMP_DIR dir1:dir2:dir3

8 Legal

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License (GFDL), Version 1.1 or any later version published by the Free Software Foundation
with no Invariant Sections, no Front−Cover Texts, and no Back−Cover Texts.

This manual is the CompFrame manual distributed under the GFDL. If you want to distribute this manual
separately from the collection, you can do so by adding a copy of the license to the manual, as described in
section 6 of the license.

DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT ARE PROVIDED UNDER THE
TERMS OF THE GNU FREE DOCUMENTATION LICENSE WITH THE FURTHER UNDERSTANDING
THAT:

DOCUMENT IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE
DOCUMENT OR MODIFIED VERSION OF THEDOCUMENT IS FREE OF DEFECTS
MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR NON−INFRINGING. THE ENTIRE RISK
AS TO THE QUALITY, ACCURACY, AND PERFORMANCE OF THE DOCUMENT OR MODIFIED
VERSION OF THE DOCUMENT IS WITH YOU. SHOULD ANY DOCUMENT OR MODIFIED
VERSION PROVE DEFECTIVE IN ANY RESPECT,YOU (NOT THE INITIAL WRITER, AUTHOR OR
ANY CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY SERVICING, REPAIR OR
CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS
LICENSE. NO USE OF ANY DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT IS
AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER; AND UNDER NO
CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER IN TORT (INCLUDING
NEGLIGENCE), CONTRACT, OR OTHERWISE, SHALL THE AUTHOR, INITIAL WRITER, ANY
CONTRIBUTOR, OR ANY DISTRIBUTOR OF THE DOCUMENT OR MODIFIED VERSION OF THE
DOCUMENT, OR ANY SUPPLIER OF ANY OF SUCH PARTIES, BE LIABLE TO ANY PERSON FOR
ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY
CHARACTER INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK
STOPPAGE, COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER DAMAGES OR
LOSSES ARISING OUT OF OR RELATING TO USE OF THE DOCUMENT AND MODIFIED
VERSIONS OF THE DOCUMENT, EVEN IF SUCH PARTY SHALL HAVE BEEN INFORMED OF THE
POSSIBILITY OF SUCH DAMAGES.

Generated on Fri Jun 3 00:00:55 2005 by 1.4.0

CompFrame

 7 Environment Variables 10

http://www.doxygen.org/index.html

	Table of Contents
	CompFrame
	 0 Terms and Abbreviations
	 1 Background
	 2 Introduction
	 2.1 Component Class
	 2.2 Interface
	 2.3 Component Library
	 2.4 Component Registration
	 2.5 Interface Registration
	 2.6 Command Registration

	 3 Command Line
	 3.1 create
	 3.2 list
	 3.3 connect
	 3.4 help

	 4 S - Scheduler
	 5 M - Message Handler
	 5.1 M Client Library
	 6 C - Command Handler
	 7 Environment Variables
	 8 Legal

